RAMA Barnabas

Radiographic and Clinical Outcomes of Distal Radius Fractures Treated with Volar Locking Plates versus Fragment-Specific Fixation

> Richard A. Pizzo DO, Priya Patel MD, Luke Menken DO, Richard S. Yoon MD, Frank A. Liporace MD, John T. Capo MD

Background

- Distal radius are common injuries and trend towards surgical fixation continues to increase
- Advancements in orthopedic implants

Results

- 54 patients were included 26 VLP, 28 FSF
- FSF groups had more complex, intra-articular fractures

Selected Patient Demographics				
	VLP	FSF	р	
Mean age, y	56.8	48.6	0.982	
Sex, n (%)			0.161	
Male	9 (34.6)	15 (53.6)		
Female	17 (65.4)	13 (46.4)		
Side involvement, n (%)			0.571	
Dominant	11 (42.3)	13 (46.4)		
Nondominant	15 (57.7)	15 (53.6)		
Fracture pattern, n (%)			0.016	
A	7 (26.9)	1 (3.6)		
В	3 (11.5)	10 (35.7)		
C	16 (61.5)	17 (60.1)		

Conclusions

 No difference in ability of VLP or FSF to restore and maintain radiographic

have resulted in a variety of plating options, including plates designed for specific fractures fragments

- Indications for these constructs over conventional volar locking plates remains largely subjective
- Majority of existing comparison studies are biomechanical or cadaveric, and exhibit mixed results

 Largely no radiographic differences observed in any fracture pattern at any time point

Fracture type A			
	VLP (n=7)	FSF (n=1)	р
Radial height (mm)			
Post-op	12.1	14.0	0.174
Final follow-up	11.1	15.0	0.118
Radial inclination (deg)			
Post-op	19.9	29.4	0.127
Final follow-up	22.4	29.8	0.127
Volar tilt (deg)			
Post-op	6.6	9.9	0.513
Final follow-up	7.8	4.6	0.513
Fracture type B			
	VLP (n=3)	FSF (n=10)	р
Radial height (mm)			
Post-op	12.7	13.1	0.599
Final follow-up	12.3	12.8	0.666
Radial inclination (deg)			
Post-op	21.9	24.2	0.237
Final follow-up	26.2	25.3	0.446
Volar tilt (deg)			
Post-op	14.1	-0.8	0.043
Final follow-up	15.8	6.6	0.128
Fracture type C			
	VLP (n=16)	FSF (n=17)	р
Radial height (mm)			
Post-op	12.0	12.4	0.986
Final follow-up	11.1	11.6	0.927
Radial inclination (deg)			
Post-op	22.9	22.1	0.652
Final follow-up	22.7	22.6	0.349
Volar tilt (deg)			
Post-op	4.5	4.6	0.914
Final follow-up	5.7	6.1	0.773

parameters.

Even with increasing fracture complexity, FSF can restore and maintain reduction.

 FSF significantly higher risk of complications, reoperations.

- Retrospective institutional database review performed
- Inclusion criteria

Methods

- Skeletally mature
- Treated with ORIF (VLP, FSF)
- >6 months follow-up data
- Exclusion criteria
 - Skeletally immature
 - Concomitant ex-fix or DSP
 - <6 months follow-up data

Limitations

- Retrospective nature
- Relatively small sample size
- Heterogenous distribution of fracture patterns
- Mean follow-up < 1 year

Future Studies

Preexisting wrist deformity

 Radiographic and clinical data extracted

 Analyses performed using paired ttest, Mann-Whitney U test, chisquare test

 There were more complications and reoperations in the FSF group vs VLP group 					
Complications and Reoperations					
	VLP	FSF	р		
Total complications, n	6	14	0.041		
Tendinopathy	1	6			
Persistent pain	1	4			
Paresthesia	3	3			
Screw perforation	1	0			
Malunion	0	1			
Total reoperations, n	1	9	0.025		
Removal of hardware	1	7			
Tenolysis	0	1			
Neurolysis	0	1			

• Prospective RCT

Analysis of functional outcomes (in progress)

Cost-analysis

The authors have no disclosures to report relevant to this study.