Hardware Removal Due to Infection after Open Reduction and Internal Fixation: Trends and Predictors

Alisina Shahi MD\(^1\), Kudret Usmani MD\(^1\), Michael Boniello MD\(^1\), Alec Kellish BS\(^2\), Ali Oliashirazi MD\(^3\), Kenneth Graf MD\(^1\), Henry Dolch MD\(^1\), Rakesh Mashru MD\(^1\)

\(^1\)Department of Orthopaedics, Cooper University Hospital, Camden, New Jersey; \(^2\)Cooper Medical School of Rowan University, Camden, New Jersey; \(^3\)Department of Orthopaedics, Marshall University, Huntington West Virginia

Introduction
- As operative techniques and implant device designs improve, open reduction with internal fixation (ORIF) is evolving as the preferred method of treatment for many fractures.
- Internal fixation has been shown to maintain reduction, provide stability that predictably allows for bony union, and lead to earlier return to function after injury.
- Hardware removal due to infection is one of the major causes of failure following ORIF.
- The aim of this study was to determine trends and predictors of infection-related hardware removal following ORIF of extremities using a nationally representative database.

Methods
- Data from the Nationwide Inpatient Sample from 2006 to 2017 was analyzed to determine the trend and predicting factors of hardware removal due to infection after ORIF.
- The regressions included interaction terms between calendar year and site of fracture.
- The regressions included interaction terms between calendar year and site of fracture.
- Logistic regression and Wilcoxon Rank-Sum Test were used to control for patient and hospital variables and compare septic and aseptic groups, and to estimate the contribution of patient and hospital factors to the probability that a patient visit was for the removal of hardware.

Results
- Highest rate of hardware removal related to infection: tarsal (6.86%), tibial (4.35%) and carpal (4.17%) fractures.
- Infection related removals increased in all fractures except radial/ulnar fractures.
- Predictors of infection related hardware removal: Tarsal fractures (OR=1.05, 95% CI: 1.03-1.08), tibial fractures (OR=1.04, 95% CI: 1.03-1.06), diabetes mellitus (OR=2.73, 95% CI: 2.36-2.94), liver disease (OR=2.03, 95% CI: 1.74-2.35), and rheumatoid arthritis (OR=2.05, 95% CI: 1.98-2.12).
- Females were less likely to undergo removal due to infection (OR=0.59, 95% CI: 0.57-0.64 P<0.001).
- Infection-related hardware removals had significantly higher total charges and length of stay compared to aseptic removals.

Discussion
- Recent studies have found the overall rate of ORIF, hardware removal, and infection-related hardware removal to be decreasing.
- Hardware removal is common after ORIF, and is seen in 6%-27% of patients.
- Infection is one of the most common complications related to hardware implantation and ORIF.
- Higher rates of infection related complications with hardware are more commonly seen in lower extremity fractures, specifically the proximal tibia and ankle.
- Risks for infection are higher in patients with complex medical comorbidities, and disorder that can disrupt wound healing.
- Diabetes mellitus, liver disease, and rheumatoid disease are well documented risk factors for hardware infection.
- Female gender has been postulated to be a protective factor for infection, and may be in part due to the effect of testosterone on the immune system.
- Our study results are in line with the literature, finding the rate of ORIF procedures, the rate of hardware removal and infection-related hardware removal to have decreased during the study period.

Conclusion
- Hardware removal rates due to infection increased in all fractures except radial/ulnar fractures.
- Diabetes, liver disease, and rheumatoid arthritis were important predictors of infection-related hardware removal.
- Our study identified some risk factors for hardware related infection following ORIF, such as diabetes, liver disease, and rheumatoid arthritis, that should be studied further in an attempt to implement strategies to reduce rate of infection following ORIF.

Table 1: Predictors of Infection-Related Hardware Removal

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.59</td>
<td>0.57-0.64</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetic Mellitus</td>
<td>2.73</td>
<td>2.36-2.94</td>
<td><0.001</td>
</tr>
<tr>
<td>Liver Disease</td>
<td>2.03</td>
<td>1.74-2.35</td>
<td><0.001</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
<td>2.05</td>
<td>1.98-2.12</td>
<td><0.001</td>
</tr>
<tr>
<td>Length of Stay</td>
<td>1.04</td>
<td>1.03-1.06</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospital Size</td>
<td>1.67</td>
<td>1.66-1.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Urban Nonprofit</td>
<td>1.46</td>
<td>1.42-1.9</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Figure 1: Hardware Location, Hardware Removal, Infection-Related Location

Figure 2: Hardware Removals due to Infection by Fracture Location

Figure 3: Odds Ratios for Predictive Factors of Infection-Related Hardware Removal

Figure 4: Average Hospital Charge For Septic and Aseptic Hardware Removal