Acute Fracture Care at a Tertiary Referral Hospital in Northern Tanzania: Systems Limitations to the Provision of Definitive Treatment in the Developing World

Hardaker WM¹, Jusabani M², Massawe H², Pallangyo A², Temu R², Masenga G², Fessahaie N³, Numfor A³, Winterton M⁴, Premkumar A⁵, and Sheth NP⁴

Penn Medicine

¹Lewis Katz School of Medicine, Philadelphia, PA, USA; ²Kilimanjaro Christian Medical Centre, Orthopaedics and Traumatology, Moshi, TZ; ³Perelman School of Medicine, Philadelphia, PA, USA; ⁴ University of Pennsylvania, Department of Orthopaedic Surgery, Philadelphia, PA, USA ⁵Hospital for Special Surgery, Department of Orthopaedic Surgery, New York, NY, USA

University of Pennsylvania Health System

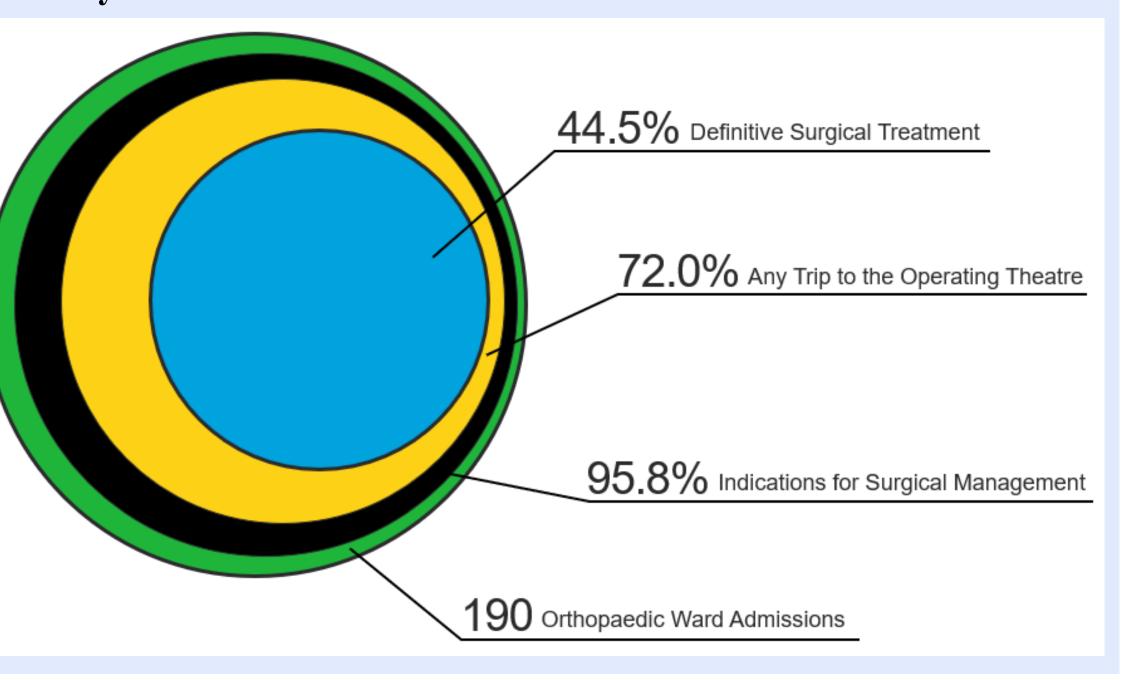
Introduction

- The burden of musculoskeletal disease in low/middle income countries (LMIC) continues to increase mainly due to **road traffic crashes (RTC)**
- Globally, RTCs constitute over 1.35 million deaths annually
- ➤ more than HIV/AIDS, TB and diarrheal diseases *combined*
- > third leading cause of disability for people aged 15-44 [1,2]
- Traumatic MSK injuries often necessitate orthopaedic surgical treatment
- \succ in LMICs, definitive care is not readily accessible for most patients
- Countries in Sub-Saharan East-Africa are no exception to this scenario
- ➤ Tanzania experienced 17,840 deaths due to RTCs
- $> 9^{\text{th}}$ highest mortality rate from RTCs worldwide [2]
- For a population of **50 million people**: **45 orthopaedic surgeons**
- > only one orthopaedic surgeon for every 1.1 million Tanzanians [3]
- Current workforce unable to address the demand for orthopaedic services

Results

Retrospective Cohort

Clinical Setting	2015	2018	Percentage Change
EMD Consultations	3,358	2,179	-35.1%
Orthopaedic Clinic Patients	6,379	11,266	+76.6%
Orthopaedic Ward Admissions	1,430	1,672	+16.9%
Total Patients	11,172	15,117	+35.3%


- KCMC treats an average of 15,117 orthopaedic patients each year
- > 74.5% are seen as outpatients in clinic
- > 14.4% are encountered in the emergency department and
- > 11.1% are inpatients in the orthopaedic ward

Prospective Cohort

• June 18 – July 31, 2018 (6-weeks)

Results - Continued

- Very few non-surgical patients were admitted to ward over the six-weeks
- 95.8% of admissions had indications for surgical fixation
 ➤ only 72.0% were taken to the operating theatre
- However, many patients taken to the operating theatre received only temporizing treatments such as surgical toilet or traction pin placement
 > only 44.5% received definitive treatment for their fracture

Our group previously characterized the orthopaedic burden at Kilimanjaro Christian Medical Center (KCMC) in northern Tanzania
At this tertiary referral center, the orthopaedic volume is comparable to that of a level one trauma center in the United States of America (USA)

➤ only 10% of population have access to orthopaedic surgical care
• As RTCs continue to rise in the developing world, the current growth rate and true burden of orthopaedic injuries is still unknown [1]

- In this study, we:
 - 1) calculated the % of orthopaedic patients that received definitive fixation for their orthopaedic injury when surgery was indicated
 - 2) re-evaluated KCMC's orthopaedic
 burden and documented the growth-rate
 since 2015 in the absence of any system
 level changes

• We hypothesized that:

- 1) the number of patients that received definitive treatment of their
- musculoskeletal injury would be less than previously reported, and 2) the burden of disease at KCMC would grow considerably over a
- 2) the burden of disease at KCMC would grow considerably over a three-year period [4]

Methods

Setting

> 190 patients admitted

> 41 isolated spine patients omitted from analysis

Variable	n	%	Mechanism of Injury	n	%
Age, years			RTC	89	46
0-14	23	12.1	Motorcycle	47	52
15-44	104	54.7			
45-64	37	19.5	Pedestrian	25	28
More than 64	26	13.7	Car	11	12
Age, years, mean (SD)	39.2 (22.1)		Truck	3	3.
Sex, male	147	77.4	Bicycle	2	2.
Occupation			Bus	1	1.
Farmer	38	20.0	(3)(3)(0)	1	
Business	31	16.3	Falls	60	31
Student	31	16.3	Infection	14	7.4
Field worker	26	13.7	Tumor/Mass	10	5.
Driver	15	7.9	Assault	7	3.
Tradesman	12	6.3			
Unemployed	10	5.3	Crush Injury	6	3.2
Other	27	14.2	Other	4	2.

- The majority of admitted patients were male and under 45 years old
- RTC (46.8%) was the most common etiology of injury
 ➢ followed by falls (31.6%), and infections (7.4%)
- The majority of RTCs (68.5%) were motorcycle-related (inc pedestrians)
- 77.9% of patients were admitted for **fracture** treatment
- ► Femur fractures (31%) were most common
- > 34.5% had at least one **open** fracture
- ► 83.8% had a **lower extremity** fracture
- Average time to surgery was 4.2 days, average LOS was 13.1 days

Discussion

Retrospective Data

- Our research team reported in 2015 that KCMC sees an average of 11,172 orthopaedic patients every year
- Three years later, that number has risen to 15,117 patients
- ➤ an increase of over 35% in total orthopaedic burden
- The musculoskeletal disease burden is persistent and growing
 <u>Prospective Data</u>
- The Global Burden of Disease 2017 study predicts a 26.0% increase in worldwide road traffic injuries by 2030

 \succ this study supports this projection [6]

- The burden of orthopaedic surgical disease seen at KCMC
 ➤ is dominated by trauma
 - \succ is increasing at a rate similar to or above that of global estimates [7]
- Significantly fewer available resources leaves a growing burden of neglected orthopaedic surgical disease

- KCMC is a 700-bed facility in northern Tanzania
- One of the country's four large tertiary referral centers
- Catchment area covers 12.5 million people
- KCMC treats 110,000 outpatients and admits 25,000 patients annually
- Limited material and intellectual resources
- ► Four full-time equivalent orthopaedic surgeons
- > 17 orthopaedic residents
- > 16 trained nurses (three nurses per shift)
- ≻ Orthopaedic ward: 66 total beds
- Five operating theaters: only 1 dedicated to orthopaedic surgery
- \succ Second theater is shared with general surgery and ob/gyn
- \succ One full-time anesthesiologist and 11 nurse anesthetists
- No established pre-hospital emergency response system *Study Design*

Retrospective Data

All available ED, outpatient clinic and orthopaedic ward records were reviewed by two authors (WH and MJ). Review of ED records established the total number of orthopaedic consultations. Outpatient analysis determined the total number of evaluated clinic patients and the percentage of patients presenting with health insurance. Retrospective review of orthopaedic ward data determined the number of ward admissions, diagnoses and discharge status (including deaths).

Prospective Data

Fracture	AO/OTA Classification	n	%
Femur		62	31.0%
rochanteric Region	31A	13	21.0%
Femoral Neck	31B	12	19.4%
Femoral Head	31C	0	0.0%
Diaphyseal - Simple	32A	18	29.0%
Diaphyseal - Wedge	32B	10	16.1%
Diaphyseal - Multi-fragmentary	32C	3	4.8%
Distal Extraarticular	33A	2	3.2%
Partial Articular	33B	1	1.6%
Complete Articular	33C	2	3.2%
Tibia		27	13.5%
Proximal Articular	41	5	18.5%
Diaphyseal	42	20	74.1%
Distal Articular	43	2	7.4%
Fibula	15	23	11.5%
Proximal Articular	4F1	4	17.4%
Diaphyseal	4F2	18	78.3%
Distal Articular	4F3	10	4.3%
Foot	11 J	23	11.5%
Metatarsal	87	15	65.2%
		6	26.1%
Phalanx Talua	88	1	
Talus Fact Couch Inium	81	1	4.3%
Foot Crush Injury Badiwa	89	12	4.3%
Radius	0.0.1	12	6.0%
Proximal Articular	2R1	0	0.0%
Diaphyseal	2R2	6	50.0%
Distal Articular	2R3	6	50.0%
Ankle		11	5.5%
Infra-syndesmotic Fibula Injury	44A	0	0.0%
Frans-syndesmotic Fibula Fracture	44B	3	27.3%
Supra-syndesmotic Fibula Fracture	44C	8	72.7%
Pelvis		9	4.5%
Acetabulum	62	4	44.4%
Pelvic Ring	61	5	55.6%
Humerus		9	4.5%
Proximal Articular	11	2	22.2%
Diaphyseal	12	2	22.2%
Distal Articular	13	5	55.6%
Hand		9	4.5%
Metacarpal	77	7	77.8%
Phalanx	78	1	11.1%
Scaphoid	72	1	11.1%
Ulna		7	3.5%
Proximal Articular	2U1	0	0.0%
Diaphyseal	2U2	4	57.1%
Distal Articular	2U3	3	42.9%
Other		8	4.0%
Patella	34	5	62.5%
Rib	16	2	25.0%
Clavicle	15	1	12.5%
JIAVICIC	15	1	12.370

Conclusion

- Without new strategies to address this worsening situation, the discrepancy between supply and demand for musculoskeletal surgical care in the developing world will continue to worsen.
- Collaborative efforts are underway to develop an Orthopaedic Center of Excellence at KCMC [8,9]
- Volunteer surgeons at international academic institutions will provide:
 ➤ year-round surgical services
- ➤ specialty training
- \succ sustainable access to implants
- \succ a mechanism to address post-operative complications
- This venture's financial structure is devised to deliver democratized orthopaedic care
 - ➤ patients would have access to care regardless of their ability to pay
- The foundation of this long-term partnership is **education** at every level

All patients, except those with isolated spine injuries, admitted to the orthopedic ward during the study period were included for prospective data collection. When available, admission and post-operative radiographs were collected and reviewed by two senior orthopaedic surgery resident authors (AP and CP). The authors classified each admission radiograph according to the 2018 AO/OTA Fracture and Dislocation Guidelines and determined if surgical fixation was indicated.[5] Post-operative radiographs were evaluated for the presence of definitive surgical fixation. Patients who received open reduction and internal fixation (ORIF) or intramedullary nailing were categorized as having undergone definitive surgical fracture treatment; isolated external fixation was categorized separately. Hardware

removal procedures were also categorized as definitive treatment.

➤ a critical component of creating a **sustainable solution**

References

"Global Status Report on Road Safety 2018". WHO, Geneva. 2018.
 Naghavi M, et al. "A systematic analysis for the Global Burden of Disease Study 2016". The Lancet, 2017.
 http://www.cosecsa.org/global-surgery-map
 Meara JG, et al. "Global Surgery 2030". The Lancet. 2015.
 Meinberg EG, et al. "Fracture and Dislocation Classification Compendium—2018". JOT, 2018
 GBD Results Tool. Available from: http://ghdx.healthdata.org/gbd-results-tool.
 Premkumar A, et al., Glob Surg, 2018.
 Sheth NP, et al. "Developing Sustainable Orthopaedic Care in Northern Tanzania: An International Collaboration". JOT, 2018.
 Sheth N, Premkumar A. AAOS Now, Feb 2020.

Acknowledgments

- Alfred Kiwia
- Justin McMahon