Open Fractures in Pediatric Orthopaedics – Can Pathways Improve Care? Christopher Makarewich, MD; Lia McNeely, MA, MSN, CPNP; Shivani Gohel, **BS; Keith Baldwin, MD, MSPT, MPH** The Children's Hospital of Philadelphia

Background

Care pathways

- Evidence based algorithms to optimize care
- Improve patient safety, outcomes, and value
- Multidisciplinary approach is essential
- In the care of open fractures, time to administration of antibiotics has been shown to be the most critical factor in preventing infection.
- To help improve outcomes at our institution we designed and implemented an open fracture pathway with the goal being to

Results

Table 1. Patient Demographics and Fracture Characteristics

		Pre-pathway	Post-pathway	
		cohort	cohort	p-value
		n=27	n=11	
		96(86106)	10.1	0.46
Age (yrs)		9.0 (8.0,10.0)	(6.7,13.6)	0.40
Gender				
	Female	8 (29.6%)	1 (9.1%)	0.237
	Male	19 (70.4%)	10 (90.9%)	
Laterality				
	Left	14 (51.9%)	5 (45.5%)	0.728
	Right	12 (44.4%)	6 (54.5%)	
	Bilateral	1 (3.7%)	0	
Fracture location				
	Bbffx	17 (63%)	6 (54.5%)	0.722
	Distal radius	2 (7.4%)	1 (9.1%)	
	Ulna/Monteggia	1 (3.7%)	0 (0.0%)	
	SCH	2 (7.4%)	0 (0.0%)	
	Femur	0 (0.0%)	1 (9.1%)	
	Tib/fib	5 (18.5%)	3 (27.3%)	
Gustilo type				
	1	22 (81.5%)	8 (72.7%)	0.667
	2	4 (14.8%)	3 (27.3%)	
	3	1 (3.7%)	0 (0.0%)	
Transfers from OSH		15 (55%)	2 (20%)	0.7

Results (Summary)

- 27 patients in the pre-pathway cohort and 11 in the post-pathway cohort.
- No differences in demographics or fracture characteristics between cohorts.
- Majority of fractures included were both bone forearm fractures, and they were primarily type 1 open injuries
- Time from ED arrival to antibiotic order decreased from 115.3 minutes to 63.5 minutes (p=0.016).
- Time from antibiotic order to antibiotic administration was similar

- reduce the time from emergency department (ED) arrival to antibiotic administration.
- Our goal was to determine if the implementation of the "Open Fracture Pathway" led to a decrease in time from ED admission to antibiotic administration?

Methods

- Study design
 - Retrospective pre-pathway cohort
 - Prospective post-pathway cohort
- **Inclusion criteria**
 - Patients 18 years of age and younger with open pelvic or extremity fractures
- **Exclusion criteria**
 - Spine, hand, foot fractures, penetrating trauma
 - Transfers from outside hospitals who received antibiotics prior to CHOP ED
- Outcomes
 - Primary
 - Timing
 - **ED** arrival \rightarrow **Antibiotics ordered**
 - ED arrival \rightarrow Antibiotics administered
 - Secondary

Table 2. Antibiotic Timing and choice

	Pre-pathway cohort n=27	Post-pathway cohort n=11	p-value				
ED arrival to Abx order (min)	115.3 (85.0,145.5)	63.5 (32.5 <i>,</i> 94.4)	0.016*				
Abx order to Abx admin (min)	48.0 (32.6 <i>,</i> 63.7)	35.7 (23.7,47.7)	0.191				
ED arrival to Abx admin (min)	163.3 (133.0, 193.6)	99.2 (66.8 <i>,</i> 131.5)	0.004*				
Abx admin within 1 hour of arrival	3 (11.1%)	2 (18.2%)	0.615				
Correct Abx choice	25 (92.6%)	11 (100%)	0.354				
ED arrival to surgery (hrs)	12.0 (7.9,16.1)	11.4 (9.4 <i>,</i> 13.4)	0.783				
Surgery within 24hrs of ED arrival	27 (100%)	11 (100%)	0.999				
Figure 1. Post-Pathway time to antibiotic order and administration 180							

between groups (48.0 vs 35.7 minutes, p=0.191).

- Time from ED arrival to antibiotic administration decreased from 163.3 minutes to 99.2 minutes (p=0.004).
- No significant differences in whether the correct antibiotic type was chosen (p=0.354) or time from ED arrival to surgery (p=0.783).
- Antibiotic administration prior to transfer increased post-pathway
 - Pre-pathway 23 of 38 transfers received antibiotics at OSH (60.5%)
 - Post-pathway 18 of 20 transfers received antibiotics at OSH (90.0%) (p=0.032)

Discussions

- **Pathways improvement low hanging fruit**
 - Working with pharmacy and ED nursing to decrease the times from antibiotic order to administration. There was improvement from 48 minutes to 35.7 minutes, which could still be improved.
 - For transfers from other hospitals, patients receiving antibiotics was not part of the formal protocol but still increased from 60.5% to 90%, which is possibly due to heightened awareness.
- Future steps

Correct antibiotic type based on GA severity

Time to surgical debridement

Pathway

	Patient wi	th Su	spected Long Bone Ope	n Fra	acture
Goals and Metrics			ED Patient with Suspected		Triage Care
Related Pathways Abuse, Physical Fracture, Extremity Fracture, Pelvis			Ibuprofen Ice pack Triage Wound car X-ray prote	Ibuprofen Ice pack Splint/sling Elevation Wound care X-ray protocol	
		Frontline Ordering Clinical (FLOC) Team Rapid Assessment IV Access Neurovascular Status Upper Extremity Lower Extremity Compartment Syndrome Use ED Open Fracture Order Set			NPO
				P	Pain Management
					When possible, optimize prior to X-ray, wound care, splint removal Ibuprofen IN fentanyl
					Morphine
		Pain C	Control		Sedation Analgesia
	Ima Anti Aim	Imagi <u>Antibi</u> Aim t	ing <u>iotic Recommendations</u> to give within 1 hour of ED arrival		Use ED Sedation Order Set Abuse Screen for indicators
		0			ED Pathway Abuse, Physical

- Continued patient data collection
- Formalize communication with outside facilities prior to transfer into pathway
- Present and discuss with trauma and ED teams

Conclusions

- Pathways can assist busy ED providers to decrease time to administration of antibiotics in the setting of pediatric open fractures.
- For patients presenting with open fractures, a care pathway can be successful in decreasing the time from ED arrival to antibiotic administration.

References

- Crawford, E. J., Pincus, D., Camp, M. W., & Coyte, P. C. (2018). Cost savings of implementing the SickKids Paediatric Orthopaedic Pathway for proximal humerus fractures in Ontario, Canada. Paediatrics & child health, 23(6), e109–e116.
- Fletcher, N. D., Andras, L. M., Lazarus, D. E., Owen, R. J., Geddes, B. J., Cao, J., . . . Bruce, R. W., Jr. (2017). Use of a Novel Pathway for Early Discharge Was Associated With a 48% Shorter Length of Stay After Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. J Pediatr Orthop, 37(2), 92-97.

- Lack, W. D., Karunakar, M. A., Angerame, M. R., Seymour, R. B., Sims, S., Kellam, J. F., & Bosse, M. J. (2015). Type III open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J Orthop Trauma, 29(1), 1-6.
- Muhly, W. T., Sankar, W. N., Ryan, K., Norton, A., Maxwell, L. G., DiMaggio, T., . . . Flynn, J. M. (2016). Rapid Recovery Pathway After Spinal Fusion for Idiopathic Scoliosis. Pediatrics, 137(4).
- Patzakis, M. J., & Wilkins, J. (1989). Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res(243), 36-40.
- Schenker, M. L., Yannascoli, S., Baldwin, K. D., Ahn, J., & Mehta, S. (2012). Does timing to operative debridement affect infectious complications in open longbone fractures? A systematic review. J Bone Joint Surg Am, 94(12), 1057-1064. Skaggs, D. L., Friend, L., Alman, B., Chambers, H. G., Schmitz, M., Leake, B., . . . Flynn, J. M. (2005). The effect of surgical delay on acute infection following 554 open fractures in children. J Bone Joint Surg Am, 87(1), 8-12.